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Abstract

A characteristic feature of hyperbolic systems of balance laws is the existence of non-trivial equilibrium solutions, where
the effects of convective fluxes and source terms cancel each other. Recently a number of so-called well-balanced schemes
were developed which satisfy a discrete analogue of this balance and are therefore able to maintain an equilibrium state. In
most cases, applications treated equilibria at rest, where the flow velocity vanishes. Here we present a new very high-order
accurate, exactly well-balanced finite volume scheme for moving flow equilibria. Numerical experiments show excellent res-
olution of unperturbed as well as slightly perturbed equilibria.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A challenge in the numerical analysis of hyperbolic systems of balance laws is to maintain the fundamental
equilibria, and to compute their perturbations accurately. Indeed, if a scheme cannot balance the effects of
convective fluxes and source terms, it may introduce spurious oscillations near equilibria. In order to reduce
these the grid must be refined more than necessary. On the other hand, well-balanced schemes promise to be
efficient near equilibria. In many cases they are also very accurate away from equilibria.

Many recent papers (see [1–4,9,11,14,17,18,20,21,27,30–33] and the references therein) treat the lake at rest
equilibrium for the shallow water equations:
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ht þ ðhuÞx ¼ 0

ðhuÞt þ hu2 þ 1

2
gh2

� �
x

¼ �ghbx;
ð1:1Þ
where h denotes the water height, u is the velocity of the fluid, b represents the bottom topography and g is the
gravitational constant.

The lake at rest is given by
u ¼ 0 and H :¼ hþ b ¼ constant: ð1:2Þ

The somewhat unusual feature of this state is that it can be expressed by linear relations in the conservative

variables U = (h,hu): if h > 0, then (1.2) is equivalent to hu = 0 and h = H � b. This makes it straightforward
to transform the conservative variables into equilibrium variables V = (hu,gH) and vice versa.

Contrary to that, the general moving water steady-state solutions are given by
hu ¼ constant and
1

2
u2 þ gðhþ bÞ ¼ constant: ð1:3Þ
It is significantly more difficult to obtain well-balanced schemes for such moving water steady states. In [8],
Gosse developed a class of first-order accurate flux-vector-splitting schemes based on the theory of non-con-
servative products [7] which is well-balanced for general steady states, including moving water equilibria. The
interface method developed by Jin [11] captures general equilibria with second-order accuracy. In [12], Jin and
Wen designed such a well-balanced scheme, which relies on computing an integral exactly, where the integrand
is only implicitly given by solutions to a cubic equation. Even though the point values of this integrand can be
obtained at any given point, the integral itself cannot be obtained in closed form and must be approximated by
a numerical quadrature. The exact well-balancedness of the scheme would then be replaced by the numerical
quadrature error. In [13], the same authors designed another scheme which is computationally less expensive,
but the scheme can only maintain the moving water steady state to second-order accuracy, not exactly. Wen
[29] developed steady state preserving schemes by reconstructing in equilibrium variables. Russo [22] devel-
oped well-balanced central schemes on staggered grids which are second-order accurate and exactly well-bal-
anced for subcritical (i.e. subsonic) moving equilibria. We make an attempt in this paper to design exactly
well-balanced, high-order accurate schemes for moving water steady states.

High-order exactly well-balanced finite volume schemes for still water equilibria have already been devel-
oped in [18,20,32,33]. Here we treat the much more complex situation of moving water.

The equilibrium variables for the moving steady-state water are given by
V ¼ ðm;EÞ; ð1:4Þ

where
m ¼ hu and E ¼ 1

2
u2 þ gðhþ bÞ: ð1:5Þ
The nonlinearity makes it non-trivial to invert the map U! V. Moreover, there is no unique way to recover
an equilibrium function V(x) or even a single equilibrium state V from a set of conservative cell averages fU ig.
Our solution to this problem, introduced in Sections 2 and 3.2, is one of the key ingredients in this paper. The
crucial idea is to define implicitly a reference equilibrium state V i ¼ V iðUiÞ in each cell in such a way, that all V i

coincide with V once we are in equilibrium.
Having defined the reference states V i, we introduce an equilibrium limiter which guarantees that a possible

equilibrium present in the cell averages fUig is maintained in the reconstruction U(x). This is the second key
building block of our well-balanced scheme, and together with the definition of the reference equilibrium states
it lays the foundation of our well-balanced algorithm.

From here on our procedure is somewhat more standard and extends techniques from [1,18,32] and others.
The main work which remains to be done is to define a well-balanced quadrature rule of the source term, and
to study the singular boundary layer at the cell edges. We split the edges into two infinitesimal layers, a con-
vective layer where the source term is not active, and a topographic layer, where the source term is present but
the flow remains in equilibrium. In the interior of the cell, we derive a new well-balanced quadrature rule for
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the moving water case, which must be limited carefully in order to satisfy the conditions of the Lax–Wendroff
theorem while maintaining high-order accuracy for general solutions in smooth regions. All together this leads
to a rather transparent formulation of our well-balanced finite volume scheme, where the role of conservative
fluxes and source terms can be clearly distinguished.

The outline of the paper is as follows: In Section 2 we study the basic transform between conservative and
equilibrium variables. The main part of the paper is contained in Section 3. In Section 3.1 we lay out the
framework of the discretization and formulate sufficient conditions for high-order accuracy and convergence
to weak solutions. In Section 3.2 we define the reference states V i implicitly and introduce our new equilibrium
limiter. In Section 3.3 we introduce the basic well-balanced quadrature rule for the source term in moving
water and introduce the infinitesimal layers at the edges which separate the discontinuities in the conservative
variables and the source term. In Section 3.4 we summarize our new high-order accurate well-balanced finite
volume scheme. The proof of well-balanced property and convergence to weak solutions are presented in
Section 3.5. In Section 4 we present one-dimensional numerical results: several challenging moving water
equilibria are preserved up to machine accuracy for many timesteps, and small perturbations are sharply
resolved. For smooth non-equilibrium flows we obtain the expected high-order convergence rates. In Section
5 we present a two-dimensional numerical example which is a small perturbation of a one-dimensional moving
equilibrium. The two-dimensional scheme is a dimension by dimension generalization of our one-dimensional
well-balanced scheme. The results are compared with those obtained from the traditional high-order WENO
schemes and the advantage of using the well-balanced scheme is demonstrated. Finally, in Section 6 we draw
some conclusions.

We would like to point out that much of our approach can be carried over directly to other classes of bal-
ance laws. All one needs to rederive is the pointwise mapping between conservative and equilibrium variables
introduced in Section 2 and the estimate at the sonic point in Lemma 3.11.

2. Conservative and equilibrium variables

In this section we study the sets of conservative variables U and equilibrium variables V upon which our
well-balanced scheme relies. As usual, the conservative variables are denoted by U ¼ ðh;mÞ ¼ ðh; huÞ. Let
E :¼ 1

2
u2 þ gðhþ bÞ ð2:1Þ
be the total energy. For smooth solutions, the shallow water equations may be rewritten as
ht þ mx ¼ 0; ð2:2Þ
ut þ Ex ¼ 0: ð2:3Þ
Thus the steady states (1.3) are given by m ” constant, E ” constant. This motivates the introduction of the
equilibrium variables
V :¼ ðm;EÞ: ð2:4Þ

In order to construct our well-balanced scheme, it is essential to transform the conservative variables U into

the equilibrium variables V and vice versa. Due to the nonlinearity of the energy, it is not straightforward to
establish such a transform.

2.1. Variable transformations

Given conservative variables U and a bottom function b, the energy E (and hence the equilibrium variables
V = V(U)) can be easily computed by (2.4). The difficulty lies in finding the inverse transform U = U(V). For
this, we introduce the Froude number:
Fr :¼ juj=
ffiffiffiffiffi
gh

p
; ð2:5Þ
which plays the same role as the Mach number in gas dynamics: A state is called sonic, sub- or supersonic if
the Froude number equals, falls below or exceeds unity. We label the different flow regimes by the sign
function



32 S. Noelle et al. / Journal of Computational Physics 226 (2007) 29–58
r :¼ signðFr � 1Þ; ð2:6Þ

so
r ¼
1 supersonic flow;

0 sonic flow;

�1 subsonic flow:

8><>: ð2:7Þ
Suppose now that V = (m,E) and b are given. Under which conditions can we recover the conservative var-
iable h from this information, and thus establish the desired transform U = U(V)?

The following development will be well-familiar to readers with a background in hydraulic engineering, see
e.g. the classical textbook of Chow [6]. We denote the part of the energy depending on h by
uðhÞ :¼ m2

2h2
þ gh: ð2:8Þ
The quantity u/g is called ‘‘specific energy’’ in hydraulic engineering. Here m is considered to be a fixed
parameter. Our task is to find a unique solution h such that
uðhÞ ¼ E � gb: ð2:9Þ

If m = 0, then one can solve (2.9) as long as E � gb > 0. If m 6¼ 0, then u(h) is positive and convex. Its

unique minimum is ðh0;u0Þ with
gh0 ¼ ðgjmjÞ
2=3
; u0 ¼

3

2
ðgjmjÞ2=3

: ð2:10Þ
Note that h0 is exactly the sonic point for the prescribed value of m. We also have a lower bound for the
energy, given by
E0 ¼ u0 þ gb ¼ 3

2
ðgjmjÞ2=3 þ gb: ð2:11Þ
If E < E0, there is no solution to (2.9). If E = E0, there is the unique solution h = h0. If E > E0, there are two
solutions, one supersonic and the other one subsonic.

It is instructive to normalize the variables via ĥ :¼ h=h0, û :¼ u=u0. Then
ûðĥÞ ¼ 2

3

1

2ĥ2
þ ĥ

� �
; ð2:12Þ
and the Froude number may be written as
FrðĥÞ ¼ ĥ�3=2: ð2:13Þ

This shows that ĥ ¼ 1, ĥ > 1 resp. ĥ < 1 correspond to sonic, sub- and supersonic states, see Fig. 1. If we

introduce Ê :¼ ðE � gbÞ=u0, then (2.9) becomes
ûðĥÞ ¼ Ê: ð2:14Þ

We summarize our results in the following Definition and Lemma.

Definition 2.1. Let m 2 R be given. A pair ðbE;rÞ 2 R� f�1; 0; 1g (resp. a triple ðE; b; rÞ 2 R2 � f�1; 0; 1g) is
an admissible state if either
r ¼ 0 and bE ¼ 1 ðresp: E ¼ E0Þ ð2:15Þ

or
jrj ¼ 1 and bE > 1 ðresp: E > E0Þ: ð2:16Þ
Lemma 2.2. Let m be given, and suppose that the pair ðbE; rÞ is admissible. Then there exists a unique solution
ĥ ¼ ĥðbE; rÞ ð2:17Þ
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Fig. 1. The normalized function ûðĥÞ. Supersonic (ĥ < 1), sonic (ĥ ¼ 1) and subsonic (ĥ > 1) regions.
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such that
ĥ < 1 for r ¼ 1 ðsupersonic flowÞ
ĥ ¼ 1 for r ¼ 0 ðsonic flowÞ
ĥ > 1 for r ¼ �1 ðsubsonic flowÞ:

ð2:18Þ
We call bhðÊ; rÞ the admissible solution of (2.14).

Written in non-scaled variables ðh;m;E; bÞ we have shown.

Corollary 2.3. Let m be given, and suppose that the triple ðE; b; rÞ is admissible. Then the unique admissible

solution h ¼ hðm;E; b; rÞ of (2.9) is given by
hðm;E; b; rÞ ¼ ðgjmjÞ
2=3

g
ĥðbE; rÞ: ð2:19Þ
Given admissible values ðbE; rÞ it is straightforward to find the corresponding solution ĥ by Newton’s
method: if r = 0, then ĥ ¼ 1. If r = 1, make sure that the starting value ĥ0 in Newton’s method satisfies
ĥ0 < 1 and ûðĥ0Þ > bE. Then the sequence ĥn generated by Newton’s method is monotone and converges qua-
dratically towards ĥðbE; rÞ. Analogously, if r = �1, assure that ĥ0 > 1 and ûðĥ0Þ > bE in order to obtain mono-
tone, quadratic convergence.

Note that a similar variable transform has also been used in [12,13,22].

3. High-order well-balanced finite volume scheme

In this section, we design a high-order finite volume weighted essentially non-oscillatory (WENO) scheme
for the shallow water Eq. (1.1), with the objective to maintain the general moving steady state (1.3). We will
concentrate on the one-dimensional case. Two space dimensions are treated in Section 5 with a numerical
example. The basic framework of the well-balanced scheme follows the one introduced by Audusse et al.
[1], and later used in the recent papers [18,33]. However, the approximation of the flux and source terms
requires more attention due to the complexity of the moving steady state.

3.1. Framework of the discretization

For simplicity we write the shallow water equations in the form
U þ f ðUÞ ¼ sðU ; bÞ: ð3:1Þ
t x
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We discretize the computational domain with cells I i ¼ ½xi�1
2
; xiþ1

2
�; i ¼ 1; . . . ;N . We denote the size of the ith

cell by nxi and the center of the cell by xi ¼ 1
2
ðxi�1

2
þ xiþ1

2
Þ. The computational variables are UiðtÞ, which

approximate the cell averages Uðxi; tÞ ¼ 1
Mxi

R
Ii

Uðx; tÞdx.

We solve an integrated version of (3.1) over the interval Ii. Our conservative finite volume scheme then
takes the classical semidiscrete form
d

dt
UiðtÞ ¼ �

1

Dxi
f̂ iþ1

2
� f̂ i�1

2

� �
þ 1

Mxi
si ¼:

1

Dxi
ri: ð3:2Þ
where f̂ iþ1
2

is a consistent, Lipschitz continuous numerical flux for the homogeneous shallow water equations
and si is a high-order approximation to the integral of the source term

R
Ii

sðhðx; tÞ; bðxÞÞdx. For later reference,
we call the RHS of (3.2) the residual ri/Dxi. Thus a well-balanced scheme is one for which all residuals vanish
at steady state.

As to the formal accuracy of the scheme, we have the following lemma:

Lemma 3.1. The numerical scheme (3.2) is formally kth order accurate if the following holds in smooth regions:

(i) f̂ iþ1
2
¼ f ðUðxiþ1

2
; tÞÞ þ OððMxiÞkÞ with a smooth error term OððMxiÞkÞ

(ii) si ¼
R

I i
sðh; bÞdxþ OððDxiÞkþ1Þ

The proof of this lemma is straightforward.
We choose a TVD Runge–Kutta discretization [26] in time. In order to complete the definition of the
scheme, we need to introduce the spatial reconstruction, the source term discretization, and the numerical
fluxes. These will be described in Sections 3.2 and 3.3. In Section 3.5 we will also prove that our scheme sat-
isfies a Lax–Wendroff theorem, which assures that limits are weak solutions.
3.2. Equilibrium-limited reconstructions in the cell interior

Assume the initial values Ui and �bi are given. We apply the high-order accurate WENO reconstruction pro-
cedure [25,23] on �bi to obtain bi; b

�
iþ1

2
, and the approximations of b(x) at the relevant Gaussian points. If b(x) is

known at all points, this WENO reconstruction procedure is unnecessary. The WENO reconstruction proce-
dure is based on a nonlinear, convex combination of lower order reconstructions from sub-stencils, with the
combination coefficients depending on the local smoothness of the function in relevant cells. It can achieve
uniformly high-order accuracy in smooth regions and can maintain a sharp, non-oscillatory discontinuity
transition. We refer to [16,10,25,23] for more details.

At each time step tn, we first apply the WENO reconstruction procedure to the variables U i to obtain U�iþ1
2
,

r�
iþ1

2
, and hence V �iþ1

2
. The reconstructed values Ui, ri and Vi at the center of the cell are also needed for the

purpose of source term discretization.
Now we need to address one of the more subtle points of the well-balanced algorithm. Even if the initial

data are in perfect equilibrium, say V ðxÞ � V for some constant equilibrium state V , the WENO-reconstructed
values U i;U�iþ1

2
and hence V i; V �iþ1

2
may not be in equilibrium any more. The problem comes from the total

energy E ¼ 1
2
u2 þ gðhþ bÞ. First of all, the topography b may be a general function of x. Second, the velocity

depends nonlinearly on height and momentum. For the lake at rest, the second problem disappears since
u = 0. The first problem can be fixed by reconstructing not b, but h + b and recovering bi; b

�
iþ1

2
as

ðhþ bÞi � hi; ðhþ bÞ�iþ1
2
� h�iþ1

2
, see [1,18].

For moving equilibria, this is much less straightforward. We recall our assumption that the topography b(x)
is smooth within each cell Ii. Let the conservative cell averages U i ¼ ð�hi; �miÞ be given. Now we assume that the
cell is in equilibrium, with constant values (m,E). Certainly, m ¼ �mi. From (2.11), the minimal possible value of

E at x is E0ðxÞ ¼ 3
2
ðgjmjÞ2=3 þ gbðxÞ. Therefore,
E P
3

2
ðgj�mijÞ2=3 þ g max

x2I i

bðxÞ ¼: Emin
i : ð3:3Þ
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It is convenient to define two more average heights related to cell Ii, one the maximal supersonic average
height hþi and the other the minimal subsonic average height h�i via
hþi :¼ 1

Dxi

Z
Ii

hð�mi;Emin
i ; bðxÞ; 1Þdx ð3:4Þ

h�i :¼ 1

Dxi

Z
Ii

hð�mi;Emin
i ; bðxÞ;�1Þdx: ð3:5Þ
Note that hþi < h0 < h�i , where h0 is the critical, or sonic, point. Now we define a local reference energy Ei as
follows:

Definition 3.2

(i) If �hi < hþi , then define E ¼ �Ei to be the unique solution of
�hi ¼
1

Mxi

Z
I i

hð�mi;E; bðxÞ; 1Þdx: ð3:6Þ
(ii) If �hi > h�i , then define E ¼ Ei to be the unique solution of
�hi ¼
1

Mxi

Z
I i

hð�mi;E; bðxÞ;�1Þdx: ð3:7Þ
(iii) Otherwise, if hþi 6 �hi 6 hi�, then set
Ei :¼ Emin
i : ð3:8Þ
(iv) We call V i :¼ ð�mi;EiÞ the reference equilibrium values.

Remark 3.3

(1) Note that in the super- (resp. sub-)sonic case the function hð�mi;E; bðxÞ;�1Þ is strictly monotonely
decreasing (increasing) with respect to E. This makes the solutions E of (3.6) resp. (3.7) well defined.

(2) Due to (3.4),(3.5), the reference energy Ei is continuous as a function of �hi.
(3) In case (iii), the equilibrium solution becomes sonic for some point x* 2 Ii. The sonic point x* is a max-

imum of b over cell Ii.

Lemma 3.4. Suppose that b(x) and U(x) are piecewise smooth. Assume furthermore that for each cell Ii, there

exists a constant equilibrium value V �i ¼ ðm�i ;E�i Þ such that
V ðUðxÞ; bðxÞÞ ¼ V �i for x 2 I i ð3:9Þ

(in other words, the data are locally in equilibrium). Let U i be the local cell averages and let V i be the reference

equilibrium values given by Definition 3.2. Then
V i ¼ V �i for all i: ð3:10Þ
Proof. First suppose that the cell is entirely supersonic, r(x) ” 1. Therefore, hð�mi;E; bðxÞ; rðxÞÞ is strictly
decreasing as a function of E. Since E�i P Emin

i ,
hþi ¼
1

Dxi

Z
I i

hð�mi;Emin
i ; bðxÞ; 1Þdx P

1

Dxi

Z
Ii

hð�mi;E�i ; bðxÞ; 1Þdx ¼ �hi: ð3:11Þ
We are therefore in case (i) of Definition 3.2, and Ei satisfies
�hi ¼
1

Mxi

Z
I i

hð�mi;Ei; bðxÞ; 1Þdx ¼ 1

Dxi

Z
I i

hð�mi;E�i ; bðxÞ; 1Þdx: ð3:12Þ



36 S. Noelle et al. / Journal of Computational Physics 226 (2007) 29–58
By the monotonicity of h(E), this implies that Ei ¼ E�i . Cells which are entirely subsonic can be treated
analogously.

Now suppose that the cell is transsonic, i.e. r changes sign within the cell at some point x*. Then
Eðx�Þ ¼ 3

2
ðgj�mijÞ2=3 þ gbðx�Þ 6 Emin

i : ð3:13Þ
On the other hand, E ¼ E�i is constant over the cell, and E�i P Emin
i . This implies that E�i ¼ Emin

i .
It remains to show that Ei ¼ Emin

i . Split the cell into I�i :¼ fx 2 I i : rðxÞ ¼ �1g and
I0

i :¼ fx 2 I i : rðxÞ ¼ 0g. Then
�hi ¼
1

Mxi

Z
Iþi

hð�mi;Ei; bðxÞ; 1Þdxþ
Z

I�i

hð�mi;Ei; bðxÞ;�1Þdxþ
Z

I0
i

hð�mi;Ei; bðxÞ; 0Þdx

 !

P
1

Mxi

Z
Iþi

hð�mi;Ei; bðxÞ; 1Þdxþ
Z

I�i

hð�mi;Ei; bðxÞ; 1Þdxþ
Z

I0
i

hð�mi;Ei; bðxÞ; 1Þdx

 !
¼ hþi : ð3:14Þ
Similarly, we obtain �hi 6 h�i . Thus we are in case (iii) of Definition 3.2, and Ei ¼ Emin
i ¼ E�i . h

In actual implementation, we use a Gauss quadrature of sufficient accuracy to approximate the integral in
(3.6)–(3.8). That is, the reference energy Ei is implicitly defined by the equation
�hi ¼
1

Dxi

X
a

xahðhui;Ei; biþa; rðUiÞÞ: ð3:15Þ
A Newton iteration is then used to solve (3.15) with the initial guess of Ei being
Eð0Þi :¼ hu2
i

2�h2
i

þ gð�hi þ �biÞ:
The conclusion of Lemma 3.4 still holds for the reference value Ei defined in (3.15), if the given conservative
cell average U i is computed following the same quadrature. The relevance of Lemma 3.4 (and its discrete ana-
logue) is that it provides an indicator that we have reached equilibrium, since in this case all the values V i

coincide.
Next we show how to use the local reference values V i to modify the WENO-reconstructed values V �iþ1

2
and

Vi in such a way that they maintain any present global equilibrium state V . For this we use the total variation
bounded (TVB) [24] type limiter function:
limðw; �wi; �wi�1Þ :¼ �wi þ kðw� �wiÞ; ð3:16Þ

where
k :¼ min 1;

P
j¼i�1j�wj � �wij2

2jw� �wij2

 !
: ð3:17Þ
Of course, other limiters should be possible as well.
We apply the limiter separately to momentum m and energy E, and write the result symbolically as
eV �iþ1

2
¼ lim V �iþ1

2
; V i; V i�1

� �
: ð3:18Þ
Similarly, we compute the limited pointwise values ~V i. Note that non-negative energies E�iþ1
2

will remain

non-negative. We have the following well-balanced property, which is important for the following steps:

Lemma 3.5. At steady state, where V ðxÞ � V , the limited values (3.18) satisfy
eV �iþ1
2
¼ eV i ¼ V i ¼ V for all i: ð3:19Þ
Therefore, we call (3.16)–(3.18) the equilibrium limiter.
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Proof. If V ðxÞ � V , then V i ¼ V for all i due to (3.10). Therefore, the parameter k in (3.16) and (3.17) van-
ishes, and
Fig. 2.
discon
limðV �iþ1
2
; V i; V i�1Þ ¼ V i ¼ V : � ð3:20Þ
Remark 3.6. The limiter is inactive in smooth region if the solution is far from the steady state, even near
smooth extrema, as can be verified by simple Taylor expansion. This guarantees that the limiter does not affect
the high order accuracy of the scheme in smooth region for general solutions of (1.1).

The corresponding conservative variables are given by
eU �iþa :¼ UðeV �iþa; b
�
iþa; r

�
iþaÞ for a 2 0;

1

2

� �
: ð3:21Þ
As an immediate consequence of Lemma 3.5 we have

Corollary 3.7. If V i�1 ¼ V i, then the equilibrium-limited values (3.21) satisfy
V ð eU i; biÞ ¼ V eU �
iþ1

2
; b�iþ1

2

� �
¼ V i: ð3:22Þ
3.3. Well-balanced quadrature rules for the residuum

In the previous section we have introduced the subtleties of the reconstruction in the interior of the cells,
where the solution is smooth. In this section we will resolve the cell-boundary discontinuities in b and U by two
layers, an equilibrium and a convective layer. In each of these layers as well as in the interior of the cell we will
define the numerical residuum in a suitable way. This will result in a well-balanced residuum.

At the boundary, both the conservative variables eU �
iþ1

2
and the topography b�iþ1

2
exhibit a jump discontinuity.

As usual, the jump in the conservative variables is treated by an approximate Riemann solver. The jump in the
topography will give rise to a d-singularity in the source term, which has to be taken into account.

To derive our scheme, we separate the boundary into two layers, see Fig. 2. Take, for example the right
boundary of cell i. To illustrate our approach, we introduce points xA < xB < xC :¼ xiþ1

2
which are separated

by an infinitesimal distance. Together with these we introduce the values
x_A x_B x_C

topographic layer in b

b

x_A x_B x_C

convective layer in V

V

The boundary layer model. Boundary between cells i and i + 1. Top: discontinuous topography b (dash-dot). Bottom: shock-
tinuity in V (dashed).
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ðU A; bAÞ :¼ eU �iþ1
2
; b�iþ1

2

� �
; ð3:23Þ

ðU B; bBÞ :¼ eU �iþ1
2
; b̂iþ1

2

� �
; ð3:24Þ

ðU C; bCÞ :¼ eU iþ1
2
; b̂iþ1

2

� �
: ð3:25Þ
The values at point xA are adjacent to the interior of the cell. The value b�iþ1
2

is the WENO-reconstructed

bottom topography, and eU �
iþ1

2
is the WENO-reconstructed and equilibrium limited conservative variable

(3.21). At the point xB the topography from the right of cell i and the left of cell i + 1 is merged,
b̂iþ1
2
¼ min b�iþ1

2
; bþiþ1

2

� �
: ð3:26Þ
The equilibrium variable remains constant, VB = VA, and the conservative variable changes accordingly to
the new value
eU �iþ1

2
:¼ U eV �iþ1

2
; b̂iþ1

2
; r�iþ1

2

� �
: ð3:27Þ
Between the points xB and xC the topography remains unchanged. The point xC marks the interface between
cells i and i + 1. The interface value eU iþ1

2
symbolizes the solution of the approximate Riemann problem,
f eU iþ1
2

� �
¼ f̂ iþ1

2
¼ F eU �iþ1

2
; eU þ

iþ1
2

� �
: ð3:28Þ
We can therefore distinguish two boundary layers within each cell. We call ½xB; xC� the convective and
½xA; xB� the topographic, or equilibrium layer. When we consider the complete residual over cell i, we also
introduce the points xC0 ¼ xi�1

2
< xB0 < xA0 as well as values U C0 , UB0 , U A0 .

We would like to remark that Castro, Gallardo, Parés and co-workers [4,20] have developed high-order
well-balanced schemes based on the theory of non-conservative products [7]. It would be interesting to under-
stand if the paths by which they connect values across an interface can be related to our subcell construction.

3.3.1. The residuum in the convective layer

In the convective layer, the topography is constant. Therefore, the source term vanishes. Adding contribu-
tions from the left and right boundaries of cell i we obtain
sconv
i ¼ 0 ð3:29Þ

rconv
i ¼ �f ðU CÞ þ f ðU BÞ � f ðUB0 Þ þ f ðU C0 Þ ð3:30Þ

¼ �f eU iþ1
2

� �
þ f eU �

iþ1
2

� �
� f eU þ

i�1
2

� �
þ f eU i�1

2

� �
: ð3:31Þ
3.3.2. The residuum in the equilibrium layer

In the equilibrium layer the bottom b changes while the equilibrium variables V ¼ ðm;EÞ remain constant.
Let
RðxÞ :¼ rðxÞ=Dx and SðxÞ :¼ sðxÞ=Dx:
Since for the exact residuum
RðxÞ ¼ �f ðUÞx þ SðxÞ ¼ �f ðUÞx � ghðxÞbðxÞx ¼ �umx � hEx ¼ 0
the discrete residuum should vanish in the equilibrium layer. Therefore, we define
requi
i ¼ 0; ð3:32Þ
and accordingly
sequi
i ¼ f ðU BÞ � f ðUAÞ þ f ðU A0 Þ � f ðUB0 Þ ¼ f eU �iþ1

2

� �
� f eU �iþ1

2

� �
þ f eU þ

i�1
2

� �
� f eU þ

i�1
2

� �
: ð3:33Þ
Thus we can express the source term as the convective flux difference and vice versa.
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3.3.3. The interior residual

Let us denote the interior of the cell by ½xL; xR�, with boundary values UL;U R; bL; bR. We assume that all
jumps discontinuities of the topography are located at the cell boundaries, and that the reconstructions of
the topography (denoted again by b(x)) are globally and uniformly Lipschitz continuous in the interior of
the cells:

Assumption 3.8

(i) The exact bottom b(x) is piecewise smooth with at most finitely many discontinuities.
(ii) The reconstructions bD(x) are uniformly and globally Lipschitz continuous in the interior of the

cells: There is a constant Lb > 0 such that for all Dx > 0, for all cells Ii and for all interior points
x,y 2 Ii,
jbDðxÞ � bDðyÞj 6 Lbjx� yj: ð3:34Þ

(iii) There is a constant CB > 0 such that for all Dx and for all edges xi�1

2
where b(x) is smooth,
jbþD ðxi�1
2
Þ � b�D ðxi�1

2
Þj 6 CbDx2: ð3:35Þ
Given numbers aL and aR, let
Da :¼ aR � aL; �a :¼ ðaL þ aRÞ=2 ð3:36Þ

be the difference and mean operators. For later use, we recall the product rule of differencing
DðabÞ ¼ �aDbþ Da�b: ð3:37Þ

We would like to define a residuum rR

L which is a high-order accurate discretization of the exact cell
residuum
�
Z

IR
L

ðf ðUÞx þ ghbxÞdx ¼ �
Z

IR
L

ðumx þ hExÞdx ð3:38Þ
and vanishes for smooth equilibria, where m and E are constants. A standard discretization, which is well-bal-
anced for the lake at rest (u = 0 = D(h + b)) is
�Df � g�hDb:
Now we will refine this discretization in such a way that it also balances moving equilibria. For this we aug-
ment the standard source term quadrature �g�hDb by a term ŝint

i ,
rint
i ¼ �Df � g�hDbþ ŝint

i : ð3:39Þ
In order to understand what well-balancing of moving equilibria requires we assume that Dm = DE = 0
and expand the flux difference in that case: using the product rule (3.37) we obtain
Df ¼ Dðmuþ gh2=2Þ ¼ �mDuþ �uDmþ g�hDh ¼ �mDuþ �uDmþ �hDðE � gb� u2=2Þ

¼ �g�hDbþ ð�m� �h�uÞDu ¼ �g�hDbþ 1

4
DhðDuÞ2: ð3:40Þ
Thus the residuum rint
i in (3.39) vanishes if and only if
ŝint
i ¼ Df þ g�hDb ¼ 1

4
DhðDuÞ2 for Dm ¼ DE ¼ 0: ð3:41Þ
In addition to this, the correction should be small enough to admit convergence to weak solutions,
namely
ŝint
i ¼ oðDxÞ; ð3:42Þ
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see the proof of Theorem 3.17. We also require that it is antisymmetric in the sense that
ŝint
i ðDb;Dh;DuÞ ¼ �ŝint

i ð�Db;�Dh;�DuÞ: ð3:43Þ
To summarize, we define the quadrature for the source term in the interior of the ith cell by
sint
i ¼ �g�hDbþ ŝint

i ð3:44Þ

and require that ŝint

i satisfies conditions (3.41)–(3.43). By construction, we have the following well-balancing
result:

Lemma 3.9. For balanced states, i.e. if Dm = DE = 0, then rint
i ¼ 0.
3.3.4. Constructing the correction to the interior source term ŝint
i

The construction of the correction to the interior source term is quite subtle due to the notorious degener-
acy at the sonic point. Fortunately, the final form of ŝint

i is rather simple. We begin by the following identities
which focus on the sonic point in equilibrium.

Lemma 3.10. Let Dm = DE = 0, and let h0 be the water height at the sonic point defined in (2.10). If hL = h0, then
jDhj ¼ C1jDbj1=2 with C1 :¼ C1ðhL; hRÞ :¼ 2h2
R

hL þ 2hR

� �1=2

: ð3:45Þ
Moreover,
1

4
jDhjjDuj2 ¼ C2jDbj3=2 with C2 :¼ C2ðhL; hRÞ :¼ ghLhR

21=2ðhL þ 2hRÞ3=2
: ð3:46Þ
Analogous identities hold if hR = h0.

Proof. Suppose wlog that hL = h0. Using the identity m2 ¼ gh3
L and the definition of the energy E we obtain

that
Db ¼ 1

g
DE � 1

2
m2D

1

h2

� �� �
� Dh

¼ 1

2g
gh3

L

h2
L � h2

R

h2
Lh2

R

� Dh ð3:47Þ

¼ � hL þ 2hR

2h2
R

ðDhÞ2; ð3:48Þ
so
ðDhÞ2 ¼ � 2h2
R

hL þ 2hR
Db; ð3:49Þ
which proves (3.45). Since Dm = DE = 0, we have
Du ¼ � m
hLhR

Dh ð3:50Þ
and therefore
s
1

4
DhðDuÞ2 ¼ m2

4h2
Lh2

R

Dh3 ¼ m2

4h2
Lh2

R

2h2
R

hL þ 2hR

� �3=2

jDbj3=2 ¼ ghLhR

21=2ðhL þ 2hRÞ3=2
jDbj3=2

; ð3:51Þ
which shows (3.46). h

Based on this lemma, we can now estimate the term 1
4
DhðDuÞ2 in all equilibrium situations.
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Lemma 3.11. Let ½xL; xR� be the interior of the cell, and suppose that Dm = DE = 0.

(i) Suppose that there is no sonic point in ½xL; xR�. Then
1

4
jDhjjDuj2 6 C3jDbj3=2 ð3:52Þ

where C3 is defined in (3.60) below.

(ii) Suppose that there is a sonic point x0 2 ½xL; xR�. Let b0 :¼ b(x0). Then
1

4
jDhjjDuj2 6 C4ðjbR � b0j þ jbL � b0jÞ3=2

: ð3:53Þ

Here C4 is defined in (3.62).
Proof

(i) Suppose wlog that we are in the supersonic case, and
hL < hR < 1: ð3:54Þ

Then a direct computation yields
gDh ¼ �gh0

Z bERb 1
0 ^ b dbE ¼ 3

2
gh0

Z bERb ĥðbEÞ3
^ b 3

dbE ¼ 3

2
gh0

Z bELb ĥðbEÞ3
^ b 3

dbE: ð3:55Þ

EL û ðhðEÞÞ EL hðEÞ � 1 ER 1� hðEÞ
Now we shift the normalized energy towards the sonic point bE ¼ 1. Let
eE :¼ 1þ bE � bER: ð3:56Þ
Since the corresponding ĥðeEÞ is still to the left of the sonic point, with ĥðeELÞ < ĥðeERÞ ¼ 1, and since the
integrand on the RHS of (3.55) is monotonically increasing in that region, we obtain
0 6
1

ĥðbEÞ3
^ b 3

6
ĥðeEÞ3

^ e 3
: ð3:57Þ
� hðEÞ 1� hðEÞ

Therefore,

gDh 6
3

2
gh0

Z bELbER

ĥðeEÞ3
1� ĥðeEÞ3 dbE ¼ 3

2
gh0

Z eEL

1

ĥðeEÞ3
1� ĥðeEÞ3 deE ¼ gð~hR � ~hLÞ ¼ gD~h: ð3:58Þ

Here, ~hL=R are the shifted heights. Denoting the shifted bottom by ~bL=R, we observe that D~b ¼ Db. Now
we can apply Lemma 3.10 and conclude that !1=2
jDhj 6 jD~hj ¼ eC1jDbj1=2 with eC1 :¼ 2~h2
L

~hR þ 2~hL

ð3:59Þ
and

1

4
jDhjðDuÞ2 6 C3jDbj3=2 with C3 :¼ m2

4h2
Lh2

R

eC3
1: ð3:60Þ

This proves (3.52).
(ii) Suppose now that hL < h0 < hR. Then
1

4
DhðDuÞ2 ¼ m2

4h2
Lh2

R

ðDhÞ3 ¼ m2

4h2
Lh2

R

ðjhL � h0j þ jhR � h0jÞ3

¼ m2

4h2
Lh2

R

ðC1ðhL; h0ÞjbL � b0j1=2 þ C1ðh0; hRÞjbR � b0j1=2Þ3 6 C4ðjbL � b0j þ jbR � b0jÞ3=2 ð3:61Þ
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with
C4 :¼ ðmaxðC1ðhL; h0Þ;C1ðh0; hRÞÞÞ3
23=2m2

4h2
Lh2

R

: ð3:62Þ
This proves (3.53). h

We are now ready to define ŝint
i . If we simply would set ŝint

i ¼ 1
4
DhðDuÞ2, this would satisfy (3.41 and 3.43),

but it would violate (3.42) in case a shock happens to cross the cell during that timestep. But we can limit this
expression as follows: Let
ŝint
i :¼ bqða=bÞ; ð3:63Þ
where
a :¼ 1

4
DhðDuÞ2; ð3:64Þ

b :¼ C4ðjbR � b0j þ jbL � b0jÞ3=2 if 9x0 2 ½xl; xR�;
C3jDbj3=2 otherwise:

(
ð3:65Þ
Here q is an odd, monotonically increasing, function in C1;1ðRÞ satisfying
qðyÞ ¼ y for jyj 6 1 ð3:66Þ
jqðyÞj 6 2 for all y 2 R ð3:67Þ
(this degree of smoothness suffices at least for fourth-order accuracy). We choose q to be the piecewise qua-
dratic function
qðzÞ :¼

z for 0 6 z 6 1

� 1
4
ð1� 6zþ z2Þ for 1 6 z 6 3

2 for z P 3

�qð�zÞ for z < 0:

8>>><>>>:

Clearly, the symmetry condition (3.43) is satisfied. Now we check the smallness condition (3.42). Let us

assume, for example, that the cell contains a sonic point. By (3.34) the bottom is Lipschitz continuous in
the interior of each cell. Therefore,
ĵsint
i j 6 2b ¼ 2C4ðjbR � b0j þ jbL � b0jÞ3=2

6 2C4L3=2
b Dx3=2: ð3:68Þ
Treating the case without sonic point analogously, we obtain that
ĵsint
i j 6 CDx3=2: ð3:69Þ
Therefore, the smallness condition (3.42) is satisfied.
Next we will verify (3.41) at equilibria. By definition, a/b 6 1 if Dm = DE = 0. Therefore, q(a/b) = a/b and
ŝint
i ¼ bða=bÞ ¼ a ¼ 1

4
DhðDuÞ2; ð3:70Þ
so condition (3.41) is satisfied.
It is straightforward to check that for smooth data, (3.39) is second-order accurate as a quadrature for the

source term, since we add a third-order difference to the term �Df � g�hDb. It is also symmetric. Thus it can be
raised to any order of accuracy by extrapolation, as we will see in the next section. It reduces to the standard
well-balanced quadrature for the lake at rest when uL = uR = 0.

3.3.5. High-order accuracy via extrapolation

The interior residual (3.39) is so far only second-order accurate. But we can directly adapt the extrapolation
technique used in the paper of Noelle et al. [18], and obtain a high-order discretization.

We first subdivide each cell into N subcells and apply the quadrature (3.44) to all subcells.
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Then we can have the following quadratures SN:
SN ¼
XN

j¼1

sint
i ðUþj�1;U

�
j ; b

þ
j�1; b

�
j Þ; ð3:71Þ
where the subscript j means the value at the point xi�1
2
þ jDx=N . In the case of steady state, we have the fol-

lowing fact:
SN ¼
XN

j¼1

sint
i ðUþj�1;U

�
j ; b

þ
j�1; b

�
j Þ ¼

XN

j¼1

ðf ðU�j Þ � f ðUþj�1ÞÞ ¼ f ðU�N Þ � f ðUþ0 Þ ¼ f U�iþ1
2

� �
� f Uþ

i�1
2

� �
:

This shows that SN is also a second-order well-balanced approximation to the source term. Hence any lin-
ear combination of Si is also a well-balanced approximation. Due to (3.43) the quadrature S1 in (3.44) is sec-
ond-order accurate and symmetric, therefore, there exists an asymptotic expansion:
SN ¼ S þ c1

Dx
N

� �2

þ c2

Dx
N

� �4

þ � � � ; ð3:72Þ
where S represents the source term. Then the idea of extrapolation can provide an approximation to S with
any order of accuracy by the combination of SN. A well-balanced fourth-order approximation is given by
4S2 � S1

3
: ð3:73Þ
Compared with the second-order discretization S1, the fourth-order well-balanced scheme here needs one
additional reconstructed point value at the cell center per cell, which is necessary for the computation of S2.
With this high-order discretization of the source term, the numerical scheme is complete, and we will show
later that this scheme is in fact well-balanced.

3.4. Summary of the one-dimensional scheme

The fourth-order well-balanced scheme is given by
d

dt
U i :¼ 1

Dxi
�F eU �iþ1

2
; eU þ

iþ1
2

� �
þ F eU �

i�1
2
; eU þ

i�1
2

� �
þ si

� �
: ð3:74Þ
Here the function F ð�; �Þ is a conservative, Lipschitz continuous numerical flux consistent with the shallow
water flux, i.e. F ðU ;UÞ ¼ f ðUÞ for all U. The left and right values eU �

iþ1
2

at the cell interface are defined in
(3.27).

From (3.29), (3.33) and (3.44) the total source term si is given by
si :¼ 4S2 � S1

3
þ f eU þ

i�1
2

� �
� f eU þ

i�1
2

� �
þ f eU �iþ1

2

� �
� f eU �

iþ1
2

� �
; ð3:75Þ
where eU �
i�1

2
is defined in (3.21). The extrapolated interior source term (4S2 � S1)/3 is defined by
S1 :¼ sint
i

eU þ
i�1

2
; eU �

iþ1
2
; bþi�1

2
; b�iþ1

2

� �
ð3:76Þ

S2 :¼ sint
i

eU þ
i�1

2
; eU i; b

þ
i�1

2
; bi

� �
þ sint

i
eU i; eU �

iþ1
2
; bi; b

�
iþ1

2

� �� �
ð3:77Þ
and the well-balanced quadrature of the source term sint
i is given by (3.44)
sint
i ðUL;U R; bL; bRÞ :¼ �g�hDbþ ŝint

i ; ð3:78Þ

where ŝint

i is given by (3.63)–(3.65), and satisfies conditions (3.41)–(3.43). The scheme is completed by a TVD
Runge–Kutta discretization [26] in time.

Algorithm 3.12. An implementation of this algorithm consists of the following steps:

1. Compute the initial cell average of U and bottom b based on the initial data. Apply the WENO reconstruc-
tion to �bi to obtain point values of b (may be ignored if bottom b is prescribed as a function of x).
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2. At each time step, apply the usual WENO reconstruction procedure to the cell averages U i, and obtain
U�iþ1

2
, hence V �iþ1

2
. Compute Ui and Vi to obtain fourth-order accuracy.

3. Compute the reference value V i as the implicit solution of Eqs. (3.6)–(3.8).
4. Apply the equilibrium limiter (3.16) to the cell averages V i; V i�1, and to the point-values V �iþ1

2
; V i, to get the

limited values eV �
iþ1

2
and eV i.

5. Compute the numerical fluxes on the RHS of (3.74).
6. Compute the high-order discretization of the source terms (3.75)–(3.78).
7. Apply a TVD Runge–Kutta scheme [26] to (3.74) to advance UiðtÞ in time.
3.5. Well-balanced property and convergence to weak solutions

We begin this section by proving that our scheme is well-balanced for equilibria made of piecewise smooth
regions separated by stationary shocks. Then we show that in the more general, non-stationary case limits of
the scheme are weak solutions.

Collecting the results of the previous section it is straightforward to prove the following:

Theorem 3.13. The WENO scheme (3.74)–(3.78) maintains smooth moving steady-state solutions (1.3) exactly

and is high-order accurate. The same holds for the fully discrete scheme.

Proof. Suppose that the initial data are a moving steady state, V ðxÞ � V . Then Lemma 3.4 implies that all

reference values V i coincide with V . Corollary 3.7 implies that V ð eU i; biÞ ¼ V ð eU �
iþ1

2
; b�iþ1

2
Þ ¼ V i. Now Lemma

3.9 implies that the interior residual vanishes, rint
i ¼ 0. Since we know from (3.32) that there is no residual

in the topographic layer, requi
i ¼ 0, it remains to show that the residual in the convective layer, rconv

i vanishes

as well. For this we study not only the values eU þ
i�1

2

and eU i�1
2
, but also the corresponding value eU �

i�1
2

from the

neighboring cell Ii�1. Since V i�1 ¼ V i, it follows that eU �
i�1

2
¼ eU þ

i�1
2

and hence f̂ i�1
2
¼ f ð eU þ

i�1
2

Þ. Therefore,
rconv
i ¼ �f̂ iþ1

2
þ f eU �

iþ1
2

� �
þ f̂ i�1

2
� f eU þ

i�1
2

� �
¼ 0 ð3:79Þ
and
ri ¼ rint
i þ requi

i þ rconv
i ¼ 0; ð3:80Þ
so both the semidiscrete and the fully discrete schemes will preserve moving steady states.
We can easily check the two conditions of Lemma 3.1 are satisfied for our scheme. This proves the high-

order accuracy. h

We can extend the well-balancedness result of the previous theorem to the case of piecewise smooth equi-
librium solutions, where the smooth equilibria Dm = DE = 0 are separated by stationary shocks. Note that
each smooth region will have its own constant value Eloc, and the Rankine–Hugoniot condition determines
the jump in energy across the shock.

Theorem 3.14. The WENO scheme (3.74)–(3.78) maintains piecewise smooth moving steady-state solution (1.3)

exactly, if the stationary shocks separating the smooth regions are all located at cell boundaries, and computed by

Roe’s numerical flux function. The limiter procedure (3.16) in this case is replaced by a one-sided limiter for the

two cells next to the shock. The same holds for the fully discrete scheme.

Proof. The proof is completely analogous to that of the previous theorem. We only have to note that for a
stationary shock located at xi�1

2
, Roe’s solver gives
f̂ i�1
2
¼ f eU þ

i�1
2

� �
:

This yields
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rconv
i ¼ �f̂ iþ1

2
þ f eU �iþ1

2

� �
þ f̂ i�1

2
� f eU þ

i�1
2

� �
¼ 0: ð3:81Þ
The rest of the argument remains unchanged. h

Next we verify a Lax–Wendroff Theorem, that limits of our scheme are weak solutions. Let us first define
the class of weak solutions which we have in mind. Let X ¼ R� ½0; T � be the domain and let u 2 C1(X) be a
test function. The difficulty is to give meaning to the source term integral
Z Z

ughbx dxdt ð3:82Þ
over the set where both b and h are discontinuous. The term hbx has been called non-conservative product and
has been extensively studied in the literature, see e.g. [19] and the references therein. We divide X into a regular
set Xreg where the measure hbxdx dt is regular with respect to Lebesgue measure dxdt (i.e. the topography b is
Lipschitz continuous) and a singular set Xsing = XnXreg. We assume that the singular set is a curve parame-
trized by t,
Xsing ¼ fðyðtÞ; tÞj0 6 t 6 Tg ð3:83Þ

(of course Xsing might also be a union of finitely many such curves). Then we blow up Xsing and shrink the set
Xreg correspondingly using a parameter d > 0,
Xd
sing :¼

[
06t6T

½yðtÞ � d; yðtÞ þ d� � ftg ð3:84Þ

Xd
reg :¼ X n Xd

sing: ð3:85Þ
Clearly, we can define the integral over the regular set as
Z Z
Xreg

ughbx dxdt :¼ lim
d!0

Z Z
Xd

reg

ughbx dxdt: ð3:86Þ
The treatment of the non-conservative product over the singular set is more involved:
Z Z
Xsing

ughbx dxdt :¼ lim
d!0

Z Z
Xd

sing

ughðbdðx; tÞ;m;E; rÞbd
xðx; tÞdxdt; ð3:87Þ
where for each t, bdð�; tÞ is the continuous piecewise linear function on Cd interpolating the three values
bdðyðtÞ � d; tÞ ¼ bLðtÞ; bdðyðtÞ; tÞ ¼ minðbLðtÞ; bRðtÞÞ; bdðyðtÞ þ d; tÞ ¼ bRðtÞ; ð3:88Þ

hðbd;m;E; rÞ is the function defined in (2.19), and the equilibrium values m resp. E are the one-sided limits of m

resp. E at that side where b ¼ minðbL; bRÞ. Wlog assume bL < bR, so m = mL and E = EL.
Now we introduce the primitive of the function gh in (2.19) via
Hðb;m;E; rÞ :¼
Z b

b0ðm;EÞ
ghðb̂;m;E; rÞdb̂; ð3:89Þ
where we may choose b0ðm;EÞ :¼ 1
g ðE �maxhðm2

2h2 þ ghÞÞ. This allows us to rewrite the integral over the singu-
lar set Xd

sing as
Z Z
Xd

sing

ughðbdðx; tÞ;m;E; rÞbd
xðx; tÞdxdt ð3:90Þ

¼
Z Z

Xd
sing

u
d

dx
Hðbdðx; tÞ;m;E; rÞdxdt: ð3:91Þ
Taking the limit d! 0, we obtain
Z Z
Xsing

ughbx dxdt ¼
Z T

0

uðyÞ lim
d!0

Z yþd

y�d

d

dx
Hðbdðx; tÞ;m;E; rÞdx

� �
dt ¼

Z T

0

uðyÞDH dt; ð3:92Þ
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where as usual DH :¼ HðbR;m;E; rÞ � HðbL;m;E; rÞ. If we introduce the average
Fig. 3.
surface
g�h :¼ 1

bR � bL

Z bR

bL

ghðb;m;E; rÞdb;
then we have the identity
DH ¼ g�hDb: ð3:93Þ

Now we are able to formulate the definition of a weak solution:

Definition 3.15. A function U 2 L1(X) is a weak solution of (1.1) if for all test functions u 2 C1(X)
Z Z
X
ðutU þ uxf ðUÞÞdxdt ¼

Z
oX
ðf ðUÞ;UÞ � nudS þ

Z Z
Xreg

ughbx dxdt þ
Z

Xsing

ug�hDb dt: ð3:94Þ
Remark 3.16

(i) For a systematic introduction to weak solutions using the theory of non-conservative products we refer
to [7,19] and the references therein. The reader should note that definition (3.92) of non-conservative
products is not the only one possible. Other definitions would lead to different classes of weak solutions,
and in order to approximate them one would have to adapt the quadrature rules for the source.

(ii) LeRoux and collaborators [15,5] have constructed a solution operator to the Riemann-problem with
variable bottom.

(iii) Our definition of a weak solution is motivated by considering the particular steady solution of a waterfall
over steep or discontinuous terrain, see Figs. 3 and 4. The water flows in supercritically from the left with
ðb;m;E; rÞ ¼ ðbL;mL;EL; 1Þ and h ¼ hðbL;mL;EL; 1Þ. As the water flows down the slide, b decreases. As
can be seen from the supercritical region in Fig. 1, the height h decreases correspondingly to the value
hC ¼ hðbR;mL;EL; 1Þ, and the flow accelerates to u = m/hC. Across the stationary shock momentum

remains constant (mR = mL), the height jumps to the value hR ¼ hC

2
ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
Þ with k2 ¼ 8m2

gh3
C

. It is

interesting to observe that the equilibrium energy decreases by a cubic term,
ER ¼ EL �
gðDhÞ3

4hChR
:

As the slide becomes infinitely steep, the waterfall converges to a weak solution in the sense of Definition 3.15.

We are now ready to prove the following Lax–Wendroff theorem:

Theorem 3.17. Suppose that according to Assumption 3.8, the bottom is piecewise smooth, contains at most

finitely many jump discontinuities, and the reconstructions bD(x) are uniformly and globally Lipschitz continuous
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Waterfall: a (finitely or infinitely) steep slide followed by a stationary shock. Dashed line: bottom topography. Circles: Water
.
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Fig. 4. Detail of waterfall. x 2 ½�0:024; 0:022�.
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in the interior of the cells. Suppose furthermore that the approximate solutions UD defined by Algorithm 3.12
converge uniformly almost everywhere to a function U 2 L1(X). Then U is a weak solution of (1.1).

Remark 3.18. Note that we admit discontinuous solution and jumps in the topography which satisfy (3.34).

Proof. Since the proof of the Lax–Wendroff Theorem is classical, we focus on the terms which are due to our
new well-balanced quadrature. For simplicity we restrict ourselves to the semidiscrete scheme and the case that
the bottom topography is independent of time. Let u be a test function and ui = u(xi). From (3.74) we have to
study the term
X

i

Dxiui
d

dt
U i �

1

Dxi
�F ð eU �iþ1

2
; eU þ

iþ1
2
Þ þ F ð eU �i�1

2
; eU þ

i�1
2
Þ þ si

� �� �
: ð3:95Þ
We are particularly interested in the source term. From (3.75) we obtain
X
i

Dxiui
si

Dxi
¼
X

i

ui
4S2 � S1

3
þ f eU þ

i�1
2

� �
� f eU þ

i�1
2

� �
þ f eU �

iþ1
2

� �
� f eU �

iþ1
2

� �� �
: ð3:96Þ
The flux differences on the RHS of (3.96) result from sequi
i as defined in (3.33) and are differences across the

topographic, or equilibrium layer where the bottom may jump. From (3.40) we have
Df ¼ �g�hDbþ 1

4
DhðDuÞ2:
Since we are in the equilibrium layer, where Dm = DE = Dr = 0, the height is given by h ¼ hðb;m;E; rÞ, see
(2.19). This implies the identities
b ¼ 1

g
E � m2

2h2

� �
� h

db
dh
¼ m2

gh3

Db ¼ m2�h

gh2
Lh2

R

Dh

DH ¼ m2

hLhR
Dh:

ð3:97Þ
From these we obtain that
Df ¼ �DH : ð3:98Þ

Thus the source term in the equilibrium layer converges to the last term on the RHS of (3.94) if the bottom

is discontinuous. If the bottom is smooth, according to (3.35) the WENO reconstruction bi�1
2

will contain at
most a jump of OðDx2Þ. Therefore,
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Df ¼ �DH
Db

Db ¼ OðDx2Þ
as well and the corresponding term in (3.96) will vanish in the limit.
Next we study the terms S1 and S2. We begin with S1 as defined by (3.76) and (3.44):
S1 ¼ sint
i

eU þ
i�1

2
; eU �

iþ1
2
; bþi�1

2
; b�iþ1

2

� �
¼ �g�hDbþ ŝint

i :
Note that we are now in the regular set Xreg, where the topography is smooth. Therefore, the term
�
X

i

Dxiuig�h
Db
Dxi
will converge to the corresponding source term on the LHS of (3.94). By (3.34) and (3.42) the remaining term
is
�
X

i

uiŝ
int
i ¼ oðDxÞ

X
i

ui ¼ oð1Þ as Dx! 0
and hence vanishes in the limit. The term S2 can be treated by the same argument. This concludes the proof.
h

4. One-dimensional numerical results

In this section we present numerical results of our fourth-order finite volume WENO scheme satisfying the
well-balanced property for the one-dimensional shallow water equation (1.1). In all the examples, time discret-
ization is by the classical third-order TVD Runge–Kutta method [26], and the CFL number is taken as 0.6,
except for the accuracy tests where smaller time step is taken to ensure that spatial errors dominate. The grav-
itation constant g is taken as 9.812 m/s2.

To measure the extra cost of our well-balancing, we have compared runtimes for two of the numerical tests
below. The CPU times of the new scheme are 72% and 84%, respectively, more than those of a traditional non-
well-balanced WENO scheme with trivial treatment of the source term.

4.1. Well-balanced test

The purpose of the first test problems is to verify the well-balanced property of our algorithm towards the
moving steady-state solution. These steady-state problems are classical test cases for transcritical and subcrit-
ical flows, and they are widely used to test numerical schemes for shallow water equations. For example, they
have been used as a test case in [27]. Here, our purpose is to maintain these steady-state solutions exactly.

The bottom function is given by
bðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12;

0 otherwise:

(
ð4:1Þ
for a channel of length 25 m. Three steady states, subcritical or transcritical flow with or without a steady
shock will be investigated.

(a) Transcritical flow without a shock:

The initial condition is given by
E ¼ 1:532

2� 0:662
þ 9:812� 0:66; m ¼ 1:53; ð4:2Þ
together with the boundary condition

	 upstream: the discharge hu = 1.534 m2/s is imposed;
	 downstream: the water height h = 0.66 m is imposed when the flow is subcritical.
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This steady state should be exactly preserved. We compute the solution until t = 20 using N = 200 uniform
mesh points. The computed surface level h + b and the bottom b are plotted in Fig. 5. In order to demonstrate
that the steady state is indeed maintained up to round-off error, we use single precision and double precision to
perform the computation, and show the L1 and L1 errors for the water height h and the discharge hu (note:
neither h nor hu in this case is a constant or polynomial function!) in Table 1 for different precisions. We can
clearly see that the L1 and L1 errors are at the level of round-off errors for different precisions, verifying the
well-balanced property (see Table 1):

(b) Transcritical flow with a shock. The initial condition is given by
Table
L1 and

Precisi

Single
Doubl
E ¼
3
2
ð9:812� 0:18Þ

2
3Þ þ 9:812� 0:2 if x 6 11:665504281554291;

0:182

2�0:332 þ 9:812� 0:33 otherwise;

(
m ¼ 0:18; ð4:3Þ
together with the boundary condition

	 upstream: the discharge hu = 0.18 m2/s is imposed;
	 downstream: the water height h = 0.33 m is imposed.

This steady state should be exactly preserved. As we mentioned in Section 3.5, we only discuss the case
when the shock is exactly located at the cell boundary. Hence we shift the computational domain to put
the shock at the cell boundary. As we mentioned in Theorem 3.14, for this case when stationary shock exists,
we need to use the Roe’s flux to compute the approximate Riemann problem (3.28), and replace the limiter
procedure (3.16) by a one-sided limiter for the two cells next to the shock, i.e., the following formula is used
instead of (3.16) and (3.17):
limðw; �wi; �wi�1Þ :¼ �wi þ kðw� �wiÞ; ð4:4Þ
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Fig. 5. The surface level h + b and the bottom b for the transcritical flow without a shock.

1
L1 errors for different precisions for the transcritical flow without a shock

on L1 error L1 error

h hu h hu

2.19E � 08 4.74E � 09 1.61E � 06 1.19E � 07
e 1.15E � 16 3.21E � 16 5.55E � 16 1.33E � 15
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where
Table
L1 and

Precisi

Single
Doubl
k :¼ min 1;
j�wi�1 � �wij2

jw� �wij2

 !
; or min 1;

j�wiþ1 � �wij2

jw� �wij2

 !
; ð4:5Þ
depending on whether the cell is on the left or right side of the shock. Also, we mentioned that the left and
right approximated values of bottom at the shock must be exact, so that the Roe’s flux can capture this shock
exactly. Here we compute the solution until t = 20 using N = 400 uniform mesh points. The computed surface
level h + b and the bottom b are plotted in Fig. 6. In order to demonstrate that the steady state is indeed main-
tained up to round-off error, we use single precision and double precision to perform the computation, and
show the L1 and L1 errors for the water height h and the discharge hu in Table 2 for different precisions.
We can clearly see that the L1 and L1 errors are at the level of round-off errors for different precisions, ver-
ifying the well-balanced property.

(c) Subcritical flow. The initial condition is given by
E ¼ 22:06605; m ¼ 4:42; ð4:6Þ

together with the boundary condition

	 upstream: the discharge hu = 4.42 m2/s is imposed;
	 downstream: the water height h = 2 m is imposed. when the flow is subcritical.

This steady state should be exactly preserved. We compute the solution until t = 20 using N = 200 uniform
mesh points. The computed surface level h + b and the bottom b are plotted in Fig. 7. In order to demonstrate
that the steady state is indeed maintained up to round-off error, we use single precision and double precision to
perform the computation, and show the L1 and L1 errors for the water height h and the discharge hu in Table 3
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Fig. 6. The surface level h + b and the bottom b for the transcritical flow with a shock.

2
L1 errors for different precisions for the transcritical flow with a shock

on L1 error L1 error

h hu h hu

2.78E � 09 2.74E � 09 3.87E � 07 2.53E � 07
e 1.06E � 15 1.23E � 15 8.37E � 14 8.32E � 14
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Fig. 7. The surface level h + b and the bottom b for the subcritical flow.

Table 3
L1 and L1 errors for different precisions for the subcritical flow

Precision L1 error L1 error

h hu h hu

Single 4.62E � 07 3.23E � 07 6.81E � 06 7.23E � 06
Double 1.44E � 17 8.84E � 17 6.66E � 16 1.77E � 15
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for different precisions. We can clearly see that the L1 and L1 errors are at the level of round-off errors for dif-
ferent precisions, verifying the well-balanced property.

4.2. Testing the orders of accuracy

In this example we will test the high-order accuracy of our schemes for a smooth solution. Following the
examples presented in [30], we have the bottom function and initial conditions
Table
L1 erro

No. of

25
50

100
200
400
800
bðxÞ ¼ sin2ðpxÞ; hðx; 0Þ ¼ 5þ ecosð2pxÞ; ðhuÞðx; 0Þ ¼ sinðcosð2pxÞÞ; x 2 ½0; 1�

with periodic boundary conditions. Since the exact solution is not known explicitly for this case, we use the
fifth-order finite volume non-well-balanced WENO scheme with N = 12,800 cells to compute a reference solu-
tion, and treat this reference solution as the exact solution in computing the numerical errors. We compute up
to t = 0.1 when the solution is still smooth (shocks develop later in time for this problem). Table 4 contains the
4
rs and numerical orders of accuracy for the example in Section 4.2

cells CFL h hu

L1 error Order L1 error Order

0.6 1.48E � 02 9.78E � 02
0.6 2.41E � 03 2.68 1.97E � 02 2.31
0.4 2.97E � 04 3.02 2.58E � 03 2.93
0.3 2.44E � 05 3.61 2.13E � 04 3.60
0.2 1.03E � 06 4.56 8.97E � 06 4.57
0.1 3.49E � 08 4.89 2.95E � 07 4.93
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L1 errors for the cell averages and numerical orders of accuracy for the finite volume schemes, respectively.
Notice that the CFL number we have used decreases with the mesh size and is recorded in Table 4. We
can easily observe the fifth-order accuracy for the WENO schemes. Note that the fifth-order WENO recon-
struction has been used in space, but the source term is approximated by a fourth-order accurate extrapola-
tion. Hence the approximation of the source term in the algorithm contributes less to the overall error. This
phenomena has been investigated in [18].

4.3. A small perturbation of a moving steady-state water

The following test case is chosen to demonstrate the capability of the proposed scheme for computations on
the perturbation of a steady-state solution, which cannot be captured well by a non well-balanced scheme.

In the Section 4.1, we presented three steady-state solutions and showed that our numerical schemes did
maintain them exactly. In this test case, we impose to them a small perturbation 0.01 on the height in the inter-
val ½5:75; 6:25�.

Theoretically, this disturbance should split into two waves, propagating to the left and right respectively.
Many numerical methods have difficulty with the calculations involving such small perturbations of the water
surface. The solution obtained on a 200 cell uniform grid with simple transmissive boundary conditions, com-
pared with the results using 2000 uniform cells, is shown in Fig. 8 for the transcritical flow without a shock, in
Fig. 9 for the transcritical flow with a shock and in Fig. 10 for the subcritical flow. The stopping time T is set as
1.5 for the first and third flow, 3 for the second flow. At this time, the downstream-traveling water pulse has
already passed the bump. We can clearly see that there are no spurious numerical oscillations and the resolu-
tion for the propagated small perturbation is very good.

4.4. The dam-break-problem over a rectangular bump

In this traditional test case we simulate the dam breaking problem over a rectangular bump, which pro-
duces a rapidly varying flow over a discontinuous bottom topography. This example was used in [28,30,18].

The bottom topography takes the form:
bðxÞ ¼
8 if jx� 750j 6 1500=8;

0 otherwise

�
ð4:7Þ
for x 2 ½0; 1500�. The initial conditions are
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ðhuÞðx; 0Þ ¼ 0 and hðx; 0Þ ¼
20� bðxÞ if x 6 750;

15� bðxÞ otherwise:

�
ð4:8Þ
We use open boundary conditions on both sides. In the beginning, we observe the standard rarefaction and
shock waves which form the solution of the Riemann problem of the homogeneous shallow water equations.
The numerical results with 400 uniform cells (and a comparison with the results using 4000 uniform cells) are
shown in Fig. 11 at ending time t = 15 s. At time T 
 17, the waves reach the discontinuous edges of the bot-
tom. After that, a part of the wave is transmitted, another part reflected, and a remaining part becomes a
standing wave. Later on, this wave system keeps interacting. When the time T reaches 60, six waves appear
in our solution. The numerical results with 400 uniform cells (and a comparison with the results using 4000
uniform cells) are shown in Fig. 12 at the ending time t = 60 s.

In this example, the water height h(x) is discontinuous at the points x = 562.5 and x = 937.5. Our scheme
works well for this example, giving well resolved, non-oscillatory solutions using 400 cells which agree with the
converged results using 4000 cells.
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5. A two-dimensional example

The shallow water system in two space dimensions takes the form:
ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1
2
gh2

	 

x
þ ðhuvÞy ¼ �ghbx;

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2
gh2

	 

y
¼ �ghby ;

8>><>>: ð5:1Þ
where again h is the water height, ðu; vÞ is the velocity of the fluid, b represents the bottom topography and g is
the gravitational constant.

Our focus of this paper is on one-dimensional problems. In two spatial dimensions there is an abundance of
steady states, and it is much more difficult to identify the interesting ones. It is in principle possible to extend
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the techniques in this paper to obtain well-balanced schemes for some of the truly two-dimensional moving
water steady states, but the procedure is significantly more complicated and we will not discuss such extensions
in this paper. In this section we only consider our one-dimensional well-balanced scheme designed in previous
sections, trivially generalized to two dimensions by using our well-balanced WENO algorithm in both direc-

tions. In the x direction, we first apply the usual WENO reconstruction procedure to obtain U�iþ1
2;j

,

where U ¼ ðh; hu; hvÞT . Then based on h�iþ1
2;j

and hu�iþ1
2;j

, we repeat steps 2–4 of Algorithm 3.12 to obtain

~h�
iþ1

2;j
and ~hu�

iþ1
2;j

. By keeping hv unchanged, we define eU �
iþ1

2;j
as ð~h�

iþ1
2;j
; ~hu�

iþ1
2;j
; hv�iþ1

2;j
ÞT and then follow steps

5–6 of Algorithm 3.12. Notice that this procedure should be carried out for more than one quadrature points
along the edge x ¼ xiþ1

2
rather than just for the middle point y = yj as described above, in order to ensure

higher than second-order accuracy. We are using U�iþ1
2;j

at the middle point y = yj above simply to demonstrate

the ideas. The same procedure is applied to the y direction, where hu remains unchanged. We take a numerical
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Fig. 13. The contours of the difference between the height h and the initial steady state (5.2) for the problem in Section 5 at time t = 0.5. 30
uniformly spaced contour lines from �0.009 to 0.012. Left: results with a 100 · 100 uniform mesh. Right: results with a 200 · 200 uniform
mesh.
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Fig. 14. The contours of the difference between the height h and the initial steady state (5.2) for the problem in Section 5 at time t = 1. 30
uniformly spaced contour lines from �0.005 to 0.008. Left: results with a 100 · 100 uniform mesh. Right: results with a 200 · 200 uniform
mesh.
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example which is a two-dimensional perturbation of a one-dimensional moving steady water, and compare
our scheme with the regular, non-well-balanced WENO scheme.

Similar to the one-dimensional case, we use the classical third-order TVD Runge–Kutta time discretization
with CFL number 0.6.

We solve the system in the rectangular domain ½0; 25� � ½0; 25�. The bottom topography is given by
Fig. 15
with a

Fig. 16
a 200 ·
bðx; yÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12;

0 otherwise:

(
ð5:2Þ
Notice that the bottom is a function of x only. A steady-state solution can be computed from:
1

2
u2 þ gðhþ bÞ ¼ 22:06605; huðx; y; 0Þ ¼ 4:42; hvðx; y; 0Þ ¼ 0: ð5:3Þ
. The 3D figure of the difference between the height h and the initial steady state (5.2) for the problem in Section 5 at time t = 0.5
200 · 200 uniform mesh. Left: results based on well-balanced scheme. Right: results based on non-well-balanced scheme.

. The 3D figure of the difference between the height h and the initial steady state (5.2) for the problem in Section 5 at time t = 1 with
200 uniform mesh. Left: results based on well-balanced scheme. Right: results based on non-well-balanced scheme.
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These data correspond precisely to the one-dimensional subcritical steady state of (4.6), and the cross sec-
tion of the unperturbed solution can be seen in Fig. 7. Our initial condition is given by a two-dimensional
small perturbation of that steady state, where h is perturbed upward by 0.05 in the box 6.5 6 x 6 7.5,
12 6 y 6 13. Figs. 13 and 14 display the disturbance as it interacts with the hump, on two different uniform
meshes with 100 · 100 cells and 200 · 200 cells for comparison. The difference between the height h and the
initial steady state (5.2) is presented at different times t = 0.5 and t = 1. We also run the same numerical test
with the well-balanced fifth-order finite volume WENO scheme for the lake at rest. Note that this scheme is
not well-balanced for moving equilibria. The comparison of the numerical results are presented in Figs. 15 and
16. The results indicate that our well-balanced scheme can resolve the complex small features of the flow very
well, without spurious features which do appear in the results obtained with the regular non-well-balanced
WENO scheme.

6. Concluding remarks

In this paper we have constructed well-balanced schemes of arbitrary order of accuracy for the moving
steady-state solutions of the shallow water equations. The new schemes extend the techniques used in our pre-
vious work for still steady water [18,33]. Special reconstruction procedure and source term discretization are
introduced such that the resulting WENO schemes balance the moving steady-state solution to machine
accuracy. In this first implementation, the new code needs about 80% more CPU time than a traditional,
non-well-balanced WENO scheme with trivial treatment of the source term. Numerical examples are given
to demonstrate the well-balanced property, accuracy, good capturing of the small perturbation to the
steady-state solutions, and non-oscillatory shock resolution of the proposed numerical method. Although
the new schemes are designed for the shallow water equation, the idea can be generalized to many other
balance laws.
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